A novel process for mutation detection using uracil DNA-glycosylase.

نویسندگان

  • P Vaughan
  • T V McCarthy
چکیده

A novel process is presented for the detection of known mutations and polymorphisms in DNA. This process, termed glycosylase mediated polymorphism detection (GMPD) involves amplification of the target DNA using three normal dNTPs and a fourth modified dNTP, whose base is a substrate for a specific DNA-glycosylase once incorporated into the DNA. The work described here utilises uracil DNA-glycosylase as the specific glycosylase and dUTP as the modified dNTP. Primers are designed so that during extension, the position of the first uracil incorporated into the extended primers differs depending on whether a mutation is present or absent. Subsequent glycosylase excision of the uracil residues followed by cleavage of the apyrimidinic sites allows detection of the mutation in the amplified fragment as a fragment length polymorphism. Variation in the sizes of the fragment length polymorphisms generated, can be readily achieved through the use of inosine bases in place of adenine bases in the upper and/or lower primers. The GMPD process is also adaptable to solid phase analysis. The use of the process for detection of mutations in the RYR1 and CFTR genes is demonstrated. Overall, the simplicity, specificity, versatility and flexibility of the GMPD process make it an attractive candidate for both small and large scale application in mutation detection and genome analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mollicute (mycoplasma) DNA repair enzyme: purification and characterization of uracil-DNA glycosylase.

The DNA repair enzyme uracil-DNA glycosylase from Mycoplasma lactucae (831-C4) was purified 1,657-fold by using affinity chromatography and chromatofocusing techniques. The only substrate for the enzyme was DNA that contained uracil residues, and the Km of the enzyme was 1.05 +/- 0.12 microM for dUMP containing DNA. The product of the reaction was uracil, and it acted as a noncompetitive inhibi...

متن کامل

Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs

During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches...

متن کامل

Nucleotide sequence of the Streptococcus pneumoniae ung gene encoding uracil-DNA glycosylase.

Uracil-DNA glycosylase, the enzyme responsible for the removal of uracil from DNA (1), is directly involved in mutation avoidance (2). Indeed, it is likely to prevent transition mutations by removing uracil that results from deamination of cytosine. It has been proposed that the removal of misincorporated uracil by uracil-DNA glycosylase also plays an indirect role in correction of replication ...

متن کامل

A label-free and sensitive fluorescent method for the detection of uracil-DNA glycosylase activity.

The activity of uracil-DNA glycosylase (UDG), an enzyme in the base excision repair, is detected at a high sensitivity by a DNA substrate containing only one uracil through a label-free fluorescent approach, which is also successfully applied for the measurement of UDG inhibitors.

متن کامل

The interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate.

The Vpr protein of human immunodeficiency virus type 1 (HIV-1) influences the in vivo mutation rate of the virus. Since Vpr interacts with a cellular protein implicated in the DNA repair process, uracil DNA glycosylase (UNG), we have explored the contribution of this interaction to the mutation rate of HIV-1. Single-amino-acid variants of Vpr were characterized for their differential UNG-bindin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 26 3  شماره 

صفحات  -

تاریخ انتشار 1998